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Abstract

Most previous work focuses on how to learn discrimi-
nating appearance features over all the face without con-
sidering the fact that each facial expression is physically
composed of some relative action units (AU). However, the
definition of AU is an ambiguous semantic description in
Facial Action Coding System (FACS), so it makes accurate
AU detection very difficult. In this paper, we adopt a scheme
of compromise to avoid AU detection, and try to interpret fa-
cial expression by learning some compositional appearance
features around AU areas. We first divided face image into
local patches according to the locations of AUs, and then we
extract local appearance features from each patch. A min-
imum error based optimization strategy is adopted to build
compositional features based on local appearance features,
and this process embedded into Boosting learning structure.
Experiments on the Cohn-Kanada database show that the
proposed method has a promising performance and the built
compositional features are basically consistent to FACS.

1. Introduction

As early as 1970s, facial expression analysis has at-

tracted some attention in the community of psychology.

Two typical pioneering works are: categorizing facial ex-

pression into six basic expressions (happiness, sadness, dis-

gust, surprise, anger, and fear) proposed by Izard [7] and

Facial Action Coding System (FACS) designed by Ekman

and Friesen [5]. FACS is composed of comprehensive stan-

dards that decompose each expression into several relative

action units (AUs). Although AU-based facial expression

analysis is much more precise compared to the six emotions

based analysis, the definitions of AUs are actually ambigu-

ous semantic descriptions. Therefore, it is not easy to do

accurate AU detection automatically. Thus, in the commu-

nities of computer vision and pattern recognition, most of

automatic facial expression analysis work only focused on

identifying an input facial image or sequence as one of six

basic emotions [13][24][8][3] [6][22][16][21][2][27]. Gen-

erally, the first step is to extract appearance features, such

as, Gabor features[15][10], haar-like features[23], and local

binary patterns(LBP)[14], and then some learning methods

are adopted to select discriminant features over the whole

face to build the classifiers, such as SVM [10][14], Ad-

aboost [23][10], and Adaboost + SVM [10]. Although they

obtained good performance in some cases, the features they

considered or selected are short of physical interpretation.

According to FACS [5], each expression has explicit and in-

tuitive local appearance variations, which are corresponding

to AUs. In other words, each expression should be physi-

cally represented by some features with special spatial in-

formation.

Moreover, it is rare that a single AU appears alone in

an expression. Usually several AUs appear simultaneously

to show a meaningful facial expression. For example, the

happiness expression may involve AU6+AU12+AU25 (lips

part); the surprise expression may involve AU1 (inner brow

raiser)+AU2 (outer brow raiser)+AU5 (upper lid raiser) +

AU25 + AU27 (mouth stretch); and the sadness expression

may involve AU1+AU4 (brow lowerer)+ AU15+AU17 [5].

Driven by this observation, Yan[18] developed the method

to do AUs recognition based on UAs’ dynamic and seman-

tic relationships. In [18], the relation among AU’s, which

comes from the phycologist scientists’ observation, is used

as the prior to build the structure of a Bayesian network,

and then the learning strategy is applied to update the struc-

ture. Due to considering the co-occurrence of AUs, Yan got

very good recognition results. However, as we know, FACS

only gives semantical descriptions of AUs. For example,

AU1 means inner brow raiser, and AU4 means eye brow

lower. The definition of the level of the AU is much am-

biguous, and it makes accurate AU detection much difficult

in practices. Therefore, it is hard to do low level expression

recognition through analyzing AUs in the practical system.

In order to handle the above issues, we propose a com-

promise scheme in this paper. Although FACS does not
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Figure 1. The distribution of AUs on the face is shown in first row, and some superimposed sub-windows on the face image. (a)Upper face

action units;(b)Lower face action units(up/down Actions);(c)lower face action units(horizontal actions);(d)lower face action units( oblique

actions);(e)lower face action units(orbital actions). Bottom:(A)The row of superimposed sub-windows along the eyes area;(B)one row of

superimposed sub-windows at face bottom.

make a clear definition for AU’s level, it points out where

each AU occurs in the face. Based on the locations of AUs,

we first divide the face into the overlap blocks to cover the

location of all the possible AUs, and we extract local ap-

pearance features from each patch with haar-like descrip-

tors [19]. Inspired by the observation that each expression

is composed of several relative AUs, we try to build compo-

sitional features with constrains to simulate the combination

of AUs. We develop an optimization method to build com-

positional features through minimizing the error. The pro-

cedure of compositional feature searching is integrated into

Boosting framework to construct the final classifiers. The

proposed method is tested on the Cohn-Kanada database,

and experimental results demonstrate its efficiency and its

consistency to FACS.

2. Local Patches and Feature Description

FACS defines 32 AUs, and each expression is composed

of several AUs. Although it is hard to obtain accurate AU

detection according its definition, the location it occurs is

clear, so we divide the face image into blocks to cover al-

most all the AUs’ location. Assuming the image with the

size of m,m, we superimpose the sub-window (local patch)

with the size of (m/4,m/4), and use the step of m/8 in

both x and y direction to obtain the local patches. In the ex-

periments, the image size is 64×64, so we totally obtain 49

local patches. Figure1 shows the distribution of active units

on the facial image, we can see the red rectangles in (A)

almost covers upper AUs and the red ones in(B) covers the

orbital AUs. Therefore, we can use the features within the

patch to describe the potential information of AUs inside.

Feature representation plays an important role in facial

expression recognition. In previous works, there have two

main categories of features: geometrical feature and appear-

ance feature. The popular geometrical feature is the key

points extracted by active shape model (ASM)[4]. Because

ASM is sensitive to illumination, pose, and exaggerated ex-

pression, we use the appearance features. The popular local

appearance descriptors contain Gabor filter, Harr-like fea-

tures, and LBP. In [14], Shan, et al, reported that LBP is

as powerful as Gabor features. The experiments in [20]

demonstrated that haar-like features are comparable with

Gabor feature and even better for expression recognition,

and similar conclusions were obtained in [23]. Due to the

simplicity of the haar-like features and the effectiveness in

face detection [17] and facial expression[23], we adopt the

haar-like features to represent face appearance.

As described above, we extract 49 patches(sub-

windows) from one facial image, and we first extract the

haar-like features from each patch. For convenience, we

denote the patches as {P1, ..., P49}, and the haar-like fea-

ture set {fp,i} for each patch P , where p is the index of

patch, i is the feature index within the corresponding patch.

The number of the haar-like features are M features in each

patch. Therefore, for one facial image, we totally have a

feature pool of {{f1,i}, ...{f49,i}}. Based on these raw fea-

tures {{f1,i}, ...{f49,i}}, we want to explore the compo-

sitional features which combine some possible subset fea-

tures together, and we expect such combination consistent

to the interpretation of FACS. Figure 2 shows an example

of a compositional feature which is composed of three raw

features from three different patches. The details of compo-

sitional feature pursuit are addressed in the next section.

3. Building Compositional Features

Inspired by the observation that usually several AUs ap-

pear simultaneously in an expression, we build composi-

tional features from different patches to analyze facial ex-
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Figure 2. The sample of a compositional feature.

pression. Some works on face detection have demonstrated

that using compositional features to build weak learner

can further improve the performance of Boosting classifier

[12][25][11]. For example, Mita, et.al, [12] used jointed

haar-like features to improve the performance of face de-

tector; Liu, et. al, [11] used linear combined features

through Kullback-Leibler(KL) boosting to learn face detec-

tor. From the view of composition strategy, there are two

popular strategies for boosting: 1) the compositional fea-

ture pool is built first, and then boosting is directly per-

formed on the compositional feature pool and to select

some compositional features to construct the final strong

classifiers[26][12]; 2) the procedure of feature combination

is integrated into boosting iterations [11][28]. For the for-

mer, feature combination is based on some rules or random

selection, and it does not need any optimization procedure.

The improvement of performance depends on the power of

the compositional features in the feature pool. For the latter,

during each iteration of boosting, an optimization procedure

is used to combine some features to fit the data well. How-

ever, such optimization procedure often takes much time be-

cause of the large search space. To alleviate this issue, [11]

and [26] choose the promising feature set as the candidates,

and linear feature combination is done by 1D sequential op-

timization.

In this paper, we adopt the second strategy, but it is dif-

ferent from [11] and [26] in that we use encoding technique

instead of linear combination to compose features. Its main

advantage is to reduce the computational cost. It is conve-

nient to build the weak learner of the compositional feature

[12], and does not need to optimize the weights of linear

combination. We also select a candidate feature set for com-

bination to avoid the exhausted search as in [11] and [26].

The selection of candidate set is as follows: For each patch

P , we calculate the training error of each feature with the

following weak classifier:

s(x) =
{

1 if p · fp,i(x) > p · θp,i

0 otherwise
(1)

where θp,i minimizes the weighted error, and it changes

with the updated weights in each iteration of boosting. We

pick up the top l features with minimum errors from each

patch as the candidate features. Therefore, the total size of

the candidate set {Fi} is 49 ∗ l. We rank all the features

in the {Fi} according to the error. Based on {Fi}, the

procedure of feature combination is as follows: First, the

most discriminative feature F1 is selected from {Fi}and

the training error ε is set as ε1. Then the Fi is to be added

to the combined feature if the training error is reduced after

combination. Equation 2 shows this update rule. The weak

classifier (1) is based on the binary value of the composi-

tional feature, and the weighted training error is updated to

the reduced one. Recursively, the combined feature con-

tinually grows up to the maximum length L or stops when

Equation (2) is not satisfied.

Fi → [F1, . . . ,Fm],
if ε[F1,...,Fm,Fi] < ε[F1,...,Fm]

(2)

The combined feature is encoded as a binary vector.

Here we give an example to show how to do encoding. As-

sume the size of the compositional feature is 3, and the se-

lected promising features are (F1, Fj , Fk). On the sam-

ple xi, s(F1(xi)) = 0, s(Fj(xi)) = 1 and s(Fk(xi)) =
1. The encoded vector of this compositional feature is:

V[F1,Fj ,Fk](xi) = (011)2 = 3.

The procedure of building compositional feature is sum-

marized in Algorithm 1.

Algorithm 1 Feature combination procedure
1: Give image Samples and the corresponding weights

(xi, yi, wi),...,(xn, yn, wi), yi ∈ {1, 0}.

2: Calculate the weighted training errors εp,i on each fea-

ture fp,j .

3: Pick up the top l features from each {fp,i} base on εp,i

, and rank them to build {F}.

4: Encode {F} on each sample for feature combination.

5: while The length of combined feature is less than L or

Equation 2 is not satisfied when the whole promising

feature set is explored. do
6: Expend the combined feature by greedy search based

on minimizing the training error.

7: Update the training error

8: end while
9: Record the current combined feature.

4. Boosting Learning
We integrate the procedure of building compositional

features into boosting, so the total boosting learning can be

summarized as in Algorithm 2. Different from the origi-

nal the original Adaboost, which selects the best feature in

each round, we try to find a compositional feature, and the

weak classifier is built based on the combined feature to up-

date the weight of samples. Because Adaboost is a typical

binary classifier, while we need to classify six basic expres-

sions, so we use the one-against-all strategy to decompose
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the six-class problem into multiple two-class problems. For

each expression, we set its samples as the positive samples,

and the samples of other expressions as the negative sam-

ples.

Algorithm 2 Boosting Learning procedure
1: Give example images x1,...,xn, and labels y1,...,yn,

where yi ∈ ±1
2: Initialize weight wt(i) = 1/N .

3: for t = 0 .... T do
4: Run Algorithm1 to build one combined feature.

5: Train a weak classifier ht based on the combined fea-

ture, and calculate the training error εt

6: Choose αt = 1
2

1−εt

εt
, and

Update:
Dt+1(i) = Dt(i) exp(−yiαtht(i)

Zt

where Zt is a normalization factor.

7: end for
8: Output the final classifier

H(x) =

T∑
t

αtht(x).

5. Experiment
We conducted our experiments on the Cohn-Kanade fa-

cial expression database [9], which is widely used to eval-

uate the facial expression recognition algorithms. This

database consists of 100 students aged from 18 to 30

years old, of which 65% were female, 15% were African-

American, and 3% were Asian or Latino. Subjects were

instructed to perform a series of 23 facial displays, six of

which were prototypic emotions mentioned above. For our

experiments, we selected 352 image sequences from 96 sub-

jects. The selection criterion was that a sequence could be

labeled as one of the six basic emotions: anger, disgust,

fear, happiness, sadness and surprise. Figure 3 shows the

samples of six expressions.

In the previous work[15][10][6][14], the researchers fo-

cus on the recognizing the expressions at the apex level,

and missed the frames at the low intensity level. How-

ever, in recent years, psychological researches have demon-

strated that besides the categories of expression, facial ex-

pression dynamics is important when attempting to deci-

pher its meaning[1]. Therefore, recognizing the expression

with low intensity is also necessary. Driven by this purpose,

we take two strategies to organize experiment data set: 1)

Apex frames only; 2) The most frames which cover the sta-

tus from onset to apex (We denote it as the extended data

for simplicity). For the apex data, we pick up the last three

frames from each sequence following to [15][10][6]. For

the extended data, we pick up more frames from each se-

quence, which cover the status from onset to apex. Figure 3

display the apex data and the the data at low intensity. We

can see that facial expression recognition at low intensity

level is a challenge task, even for humane beings.

(A)

(B)

Figure 3. The example of six expressions: Anger, Disgust, Fear,

Happiness, Sadness and Surprise. (A)Samples of the apex data

which come from the last frame of the sequence; (B)Samples of

the extended data which are at low intensity level.

In this paper, we normalize the images to 64 × 64 based

on the location of eyes as in [23]. The patch size is set to

16 × 16, and 774 haar-like features are extracted from each

patch. So totally we have 37926 haar-like features for each

image. To better evaluate the proposed method, we compare

the proposed method to two methods. One is similar to [10],

where we replace the Gabor feature by Haar feature. Due to

no feature scale limitation in the framework of[10], totally

195552 haar features are extracted for Adaboost to select.

We also perform Adaboost on the feature pool extracted

from the local patches exactly as the proposed method. For

convenience, we denote the proposed method and these two

methods as Combined feature+Adaboost, Haar+Adaboost,

and Haar(constrained)+Adaboost respectively. In our ex-

periment, we randomly select 66% subjects as the training

set, and the rest subjects as the testing set. There are two

key parameters in the proposed method: 1) the number of

top feature picked l ; 2) the maximum length of composi-

tional feature L; We set both l to 5 for all the experiments

empirically, and L is up to 15.

5.1. Results on Apex Data

Before we report the results on the testing set, we

would like to analyze the performances of three meth-

ods on the training set. Figure 4 shows the perfor-

mance of the training error vs. the number of the fea-

tures. We can see that the converge rates of Combine fea-

ture+Adaboost is a little bitter faster than Haar+Adaboost

and Haar(constrained)+Adaboost. The experimental results

on the testing set are listed in Table 1. We can see that

the proposed method outperforms the other two. The im-

provement of the proposed method is slight compared to

Haar+Adaboost. Our method obtains the recognition ac-

curacy of 92.3%, while that of Haar+Adaboost is 92.1%.

This is reasonable that the apex is easy to discriminate.

However, for the low expression intensity data, the advan-
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Figure 4. Training error VS. Number of features on the apex data.
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Figure 5. Training error VS. Number of features on the extended data.

tage of the proposed method will become obvious, and

we will report this group experiments in the next subsec-

tion. Haar(constrained)+Adaboost obtains a worse perfor-

mance, because its feature pool is much smaller than that of

Haar+Adaboost. Based on the results reported in the state-

of-arts methods [15][10][6][14] on the same apex data, the

proposed method is comparable to them. For example, in

[10], they used the Gabor features and Adaboost classifier,
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Table 1. Performances on the testing set

Methods Accuracy (%)

Haar + Adaboost 92.1

Haar(constrained) + Adaboost 88.43

Combined Features + Adaboost 92.3

and they obtained the recognition accuracy of 90.1% under

the leave-one-out testing protocol. Table 2 lists the confu-

sion matrix of the proposed method.

To further evaluate the proposed method, we want to

investigate the relationship between the selected composi-

tional features and AUs. Figure 6 shows the top features

selected by the three methods. We can see that the se-

lected top compositional features are consistent to the in-

terpretation of FACS. For example, sadness expression may

involve AU1+AU4+AU15+AU17, the first compositional

feature contains the corresponding features which cover all

these AUs.
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Figure 6. The distribution of the selected features on the Apex

Data. Top row: the top 5 features selected in Haar+boosting; Mid-

dle row: the top 5 features selected in Haar(constrained)+boosting;

Bottom row: the first 3 compositional features in our method.

5.2. Results on Extended Data

The apex data is too limited to evaluate the real per-

formance of methods, so we extend the data set to cover

more frames at low intensity level to evaluate the three

methods. Figure 5 shows the performance of the train-

ing error vs. the number of features. Table 3 shows

the results on the testing set. Similar to the results

on the apex data, combined feature+Adaboost outper-

forms the other two, and Haar+Adaboost is better than

Haar(constrained)+Adaboost. However, Combine fea-

ture+Adaboost achieves much higher recognition accuracy

(80.0%) than Haar+Adaboost (78.41%), because the pro-

posed method can efficiently capture several AUs simulta-

neously to enhance the discrimination ability, especially at

the low expression level. Figure7 shows the distribution of

the top features selected by the three methods. We can see

that the top selected compositional features are similar to

the results on the apex data, so it shows that the proposed

method has physical significance. Table 4 shows the confu-

sion matrix of the proposed method.

Table 3. Performances on the extended testing set

Methods Accuracy (%)

Haar + Adaboost 78.4

Haar(constrained) + Adaboost 74.1

Combined Features + Adaboost 80.0
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Figure 7. The distribution of the selected features on the extended

Data. Top row: the top 5 features selected in Haar+boosting; Mid-

dle row: the top 5 features selected in Haar(constrained)+boosting;

Bottom row: the first 3 compositional features in our method.

6. Conclusion

In this paper, we proposed a new facial expression recog-

nition method with compositional features. We first di-

vide face image into blocks to cover the AUs’ location, and

then we extract local appearance features from each patch.

A minimum error based optimization strategy is adopted

to build compositional features based on local appearance

features, and this process embedded into Boosting learn-

ing structure. Experiments on the Cohn-Kanada database

demonstrated that the proposed method has a promising

performance. Especially the proposed method showed a

good performance on the low expression intensity data.

Moreover, the experimental results illustrated that and the

selected compositional features are basically consistent to

the interpretation of FACS.

References
[1] Z. Ambadar, J. Schooler, and J. F. Cohn. Deciphering the

enigmatic face The importance of facial dynamics in in-

terpreting subtle facial expression. Psychological Science,

2005. 4

[2] I. Cohen, N. Sebe, A. Garg, L. Chen, and T. Huang. Facial

expression recognition from video sequences: Temporal and

static modeling. Computer Vision and Image Understanding,

91(1-2), 2003. 1

[3] J. Cohn. Automated analysis of the configuration and timing

of facial expression. What the face reveals (2nd edition):
Basic and applied studies of spontaneous expression using
the Facial Action Coding System (FACS), 2005. 1

[4] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-

tive shape models: their training and application. Comput.
Vis. Image Underst., 61(1), 1995. 2

2643



Table 2. The confusion matrix of our proposed method based on the Apex Data

Recognition rate Angry Disgust Fear Happiness Sadness Surprise

Angry 84.38 0 3.13 0 12.50 0

Disgust 2.78 91.67 0 0 5.56 0

Fear 0 0 93.18 2.27 4.55 0

Happiness 1.47 0 0 95.59 0 2.94

Sadness 0 0 9.62 0 90.38 0

Surprise 0 0 0 0 1.67 98.33

Table 4. The confusion matrix of our proposed method based on the extended Data

Recognition rate Angry Disgust Fear Happiness Sadness Surprise

Angry 81.18 11.82 3.76 1.07 2.15 0

Disgust 13.52 55.29 22.94 2.94 2.94 2.35

Fear 0.46 0.93 81.39 10.69 6.04 0.46

Happiness 0 0 5.09 94.90 0 0

Sadness 1.26 0.84 11.34 8.40 74.36 3.78

Surprise 0 1.93 1.16 0.38 5.42 91.08

[5] P. Ekman and W. V. Friesen. Facial action coding system.

Consulting Psychologists Press, 1978. 1

[6] G.Zhao and M. Pietikainen. Dynamic texture recognition

using local binary patterns with an application to facial ex-

pressions. IEEE Trans. Pattern Anal. Mach. Intell., 29(6),

2007. 1, 4, 5

[7] C. E. Izard. The face of emotion. New York: Appleton-
Century-Crofts, 1971. 1

[8] J.Hoey. Hierarchical unsupervised learning of facial expres-

sion categories. IEEE Workshop on Detection and Recogni-
tion of Events in Video., 2001. 1

[9] T. Kanade, J. Cohn, and Y.-L. Tian. Comprehensive database

for facial expression analysis. Proceedings of the 4th
IEEE Int. Conf. on Automatic Face and Gesture Recognition
(FG’00), 2000. 4

[10] G. Littlewort, M. S. Bartlett, I. Fasel, J. Susskind, and

J. Movellan. Dynamics of facial expression extracted auto-

matically from video. J. Image and Vision Computing, 2006.

1, 4, 5

[11] C. Liu and H.-Y. Shum. Kullback-leibler boosting. Com-
puter Vision and Pattern Recognition, IEEE Computer Soci-
ety Conference on, 2003. 3

[12] T. Mita, T. Kaneko, and O. Hori. Joint haar-like features for

face detection. ICCV ’05: Proceedings of the Tenth IEEE
International Conference on Computer Vision, 2005. 3

[13] M. Pantic and L. J. M. Rothkrantz. Automatic analysis of

facial expressions: The state of the art. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2000. 1

[14] C. Shan, S. Gong, and P. W.McOwan. Robust facial expres-

sion recognition using local binary patterns. IEEE Int. Conf.
on Image Processing, 2005. 1, 2, 4, 5

[15] Y. Tian. Evaluation of face resolution for expression analy-

sis. Computer Vision and Pattern Recognition Workshop on
Face Processing in Video, 2004. 1, 4, 5

[16] Y. Tian, T. Kanade, and J. Cohn. Evaluation of gaborwavelet

-based facial action unit recognition in image sequences of

increasing complexity. (FG’02), 2002. 1

[17] K. Tieu and P. Viola. Boosting image retrieval. IEEE Com-
puter Vision and Pattern Recognition, 2000. 2

[18] Y. Tong, W. Liao, and Q. Ji. Facial action unit recognition by

exploiting their dynamic and semantic relationships. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

29(10), 2007. 1

[19] P. Viola and M. Jones. Robust real-time object detection. Int.
J. Computer Vision, 57(2), 2002. 2

[20] J. Whitehill and C. W. Omlin. Haar features for facs au

recognition. FG, 2006. 2

[21] Y. Yacoob and L. Davis. Computing spatio-temporal rep-

resentations of human faces. Computer Vision and Pattern
Recognition, 1994. 1

[22] P. Yang, Q. Liu, and D. N. Metaxas. Facial expression recog-

nition based on dynamic binary patterns. Computer Vision
and Pattern Recognition, 2008. 1

[23] P. Yang, Q. Liu, and D. N. Metaxas. Boosting encoded

dynamic features for facial expression recognition. Pattern
Recogn. Lett., 30(2), 2009. 1, 2, 4

[24] M. Yeasin, B. Bullot, and R. Sharma. From facial expression

to level of interest: A spatio-temporal approach. Computer
Vision and Pattern Recognition, 2004. 1

[25] X.-C. Yin, C.-P. Liu, and Z. Han. Feature combination using

boosting. Pattern Recogn. Lett., 26(14), 2005. 3

[26] J. Yuan, J. Luo, and Y. Wu. Mining compositional fea-

tures for boosting. Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on, 2008. 3

[27] Z. Zeng, M. Pantic, G. Roisman, and T. Huang. A Survey

of Affect Recognition Methods: Audio, Visual, and Sponta-

neous Expressions. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 31(1), 2009. 1

[28] X. Zhang, L. Liang, X. Tang, and H.-Y. Shum. L1 regular-

ized projection pursuit for additive model learning. Com-
puter Vision and Pattern Recognition, IEEE Computer Soci-
ety Conference on, 2008. 3

2644


