Immersive Conformal Visualization

Kaloian Petkov and Arie Kaufman

Center for Visual Computing, Stony Brook University

Mesh Templates

Define source and target visibility meshes
- Source mesh is fully enclosed
- Target mesh matches the topology of the display device
- Source mesh is cut to match the boundary of the target mesh

Conformal Mapping

- Map the mesh template to a sphere
- Remove a face from the mesh
- Cut the geometry along \(\tau \)
- Flatten to the 2D plane
- Map to the annulus
- Map the source mesh to the disc
- Project the 2D mapping back to the mesh

Conformal Visualization

Visual information from the missing walls is recovered
- Conformal map is angle-preserving, therefore shapes are preserved locally
- Size of objects changes near the boundary

Dynamic Visibility Manipulation

Reference point is moved during rendering of the conformal map
- Computed entirely on the GPU, real-time performance
- Implemented as a Focus+Context user interface

Rasterization

GPU tessellation of all scene geometry
- Smooths the results of conformal mapping
- Adaptive tessellation based on projection sizes

Conformal map applied during rendering
- Performance scales with scene complexity
- Computed in a custom geometry shader
- All vertices are translated based on the \(T_{\text{geom}} \) transformation

Volume Rendering and Raytracing

Viewing rays are transformed directly
- Using the \(T_{\text{map}} \) conformal transformation
- Performance scales with image resolution

Direct Volume Rendering (DVR)
- Same view with Conformal Visualization

GPU Raytracing
- Same view with Conformal Visualization